论 著。

泉州地区女性人乳头状瘤病毒基因型与宫颈病变的关系

陈紫萱,蒋燕成,张志珊(福建医科大学附属泉州市第一医院检验科 362000)

【摘要】目的 探讨泉州地区女性人乳头状瘤病毒(HPV)基因型的感染率,及各基因型与宫颈疾病的关系。 方法 采用导流杂交基因芯片法对泉州地区 5 080 例女性进行 HPV 分型检测,同时,对 1 154 例进行临床病理组织诊断。结果 筛查人群中 HPV 的总感染率为 24.37%(1 238/5 080),感染率最高为 HPV16 型,占总感染数的 24.72%(306/1 238)。各年龄段 HPV 的感染率差异有统计学意义($\chi^2_{HPV}=13.801,P<0.01$)。HPV16 在宫颈病理组织中感染率逐级增高($\chi^2_{kk}=214.356,P<0.01$)。结论 HPV 基因型感染与宫颈病变的发生密切相关,其中 HPV16、HPV18 感染易致宫颈病变进展乃至癌变发生,检测 HPV 基因型是筛查和监测宫颈病变的有效辅助方法。

【关键词】 人乳头状瘤病毒; 基因型; 宫颈疾病

DOI: 10. 3969/j. issn. 1672-9455. 2015. 08. 005 文献标志码: A 文章编号: 1672-9455(2015)08-1037-03

Relationship between human papillomavirus genetypes and cervical lesions of women in Quanzhou* CHEN Zi-xuan, JIANG Yan-cheng, ZHANG Zhi-shan^{\(\Delta\)} (Department of Clinical Laboratory, the Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China)

[Abstract] Objective To explore the infection rate of human papilloma virus (HPV) genotypes and the relationship between genotypes and cervical lesions of women in Quanzhou. Methods A total of 5 080 women were collected by liquid-based method for 21 subtypes of HPV by flow through hybridization and gene chip technology, which 1 154 cases by clinical pathology diagnosis. Results The positive rate of HPV in 5 080 women was 24.37%. HPV16 was the most common type, which is accounted 24.72% in infected women. There was significant difference in HPV positive rates among the investigated age group ($\chi^2_{HPV} = 13.801$, P < 0.01). HPV16 infection rates increased progressively in the grade of histopathological diagnoses ($\chi^2_{trend} = 214.356$, P < 0.01). Conclusion HPV genotypes infection is related to the cervical lesions. Among them, HPV16, HPV18 infection is the primary cause of cervical disease progression and carcinogenesis. HPV detection is a valuable technique for screening and monitoring of secondary cervical lesions.

【Key words】 human papilloma virus; genotype; cervical disease

人乳头瘤状病毒(HPV)是一种具有高度宿主特异性的嗜上皮 DNA 病毒,目前已发现的 HPV 亚型约 100 多种,其中与人类生殖道疾病相关的约有 40 余种¹¹。国际癌症协会(IARC)根据致癌能力的大小将其分为高危型和低危型,高危型 HPV 的持续感染及多重感染是导致宫颈癌变的重要原因之一¹²。然而,对于各地不同高危型 HPV 感染在宫颈组织的发生、发展及致癌性的流行病学研究仍然有限。本研究针对泉州地区女性宫颈 HPV 感染及其基因型分布进行调查,探讨不同型别 HPV 感染与宫颈病变的关系。

1 资料与方法

- 1.1 一般资料 2013年7月至2014年7月到本院妇产科就 诊,并自愿接受宫颈 HPV 筛查的有性生活的女性宫颈脱落细胞标本5080例。其中,同时做病理组织学检查的女性1154例,依病理检查结果分为慢性宫颈炎、CIN I、CIN II、CIN II和 宫颈癌,各组筛查者均未接受疫苗注射;无子宫切除和宫颈手术史;均未接受放疗或化疗,且半年内未接受过激素类药物治疗,其他有关方面差异无统计学意义。
- 1.2 仪器及试剂 人乳头状瘤病毒基因分型检测试剂盒、 HybriMax 医用核酸分子快速杂交仪为香港凯普公司产品,

PCR 扩增仪为德国 Eppendorf 公司产品。

- 1.3 方法 HPV 分型检测方法:窥阴器暴露宫颈后,用棉拭子擦去宫颈表面分泌物,再用宫颈刷刷取宫颈口脱落细胞,放人细胞保存液中,按说明书操作方法进行 HPV 分型检测。根据基因芯片原理,采用快速导流杂交法一次性检测占中国人群HPV 感染 95%的 21 种亚型,包括 15 种高危亚型: HPV16、HPV18、HPV31、HPV33、HPV35、HPV39、HPV45、HPV51、HPV52、HPV53、HPV56、HPV58、HPV59、HPV66、HPV68型; 6 种低危亚型: HPV6、HPV11、HPV42、HPV43、HPV44、CP8304型。
- 1.4 统计学处理 采用 SPSS 19.0 统计软件对资料进行描述性分析,计算感染率、构成比等指标。率的比较采用 χ^2 检验法,以 P < 0.05 表示差异有统计学意义。

2 结 果

2.1 HPV 总体感染情况 见表 1。在 5 080 例 HPV 普查者中阳性感染者 1 238 例,感染率 24.37%,其中高危型 894 例 (72.21%),低危型 204 例 (16.48%),同时感染高、低危型HPV 患者 140 例 (11.31%)。1 238 例阳性患者中,除了HPV43 外,其余 20 种亚型均有检出,其中以 16 亚型最多,占

^{*} 基金项目:福建省青年人才基金资助项目(2008F3123);福建医科大学科技发展专项基金资助项目(FZS08004)。 作者简介:陈紫萱,女,初级检验师,硕士,主要从事肿瘤分子生物学研究。

[△] 通讯作者,E-mail:15859775058@139.com。

总感染数的24.72%(306/1 238),其次为 HPV52、HPV58 亚型,所占比例分别为 21.81%(270/1 238)和 14.94%(185/1 238)。

表 1 HPV 感染的型别分布

HPV 类型	单型感染(n)	多型感染(n)	总感染[n(%)]	
 高危型				
HPV16	197	109	306(24.72)	
HPV52	173	97	270(21.81)	
HPV58	100	85	185(14.94)	
HPV33	42	38	80(6.46)	
HPV53	42	37	79(6.38)	
HPV18	37	40	77(6.21)	
HPV39	29	37	66(5.33)	
HPV68	29	30	59(4.77)	
HPV31	34	22	56(4.52)	
HPV66	14	30	44(3.55)	
HPV59	17	15	32(2.58)	
HPV56	9	21	30(2.42)	
HPV51	8	22	30(2.42)	
HPV45	11	14	25(2.02)	
HPV35	3	8	11(0.89)	
低危型				
HPV11	58	63	121(9.77)	
HPV6	56	56	112(9.05)	
CP8304	62	42	104(8.40)	
HPV42	5	11	16(1.29)	
HPV44	6	5	11(0.89)	
HPV43	0	0	0(0.00)	

龄段感染率分别为 28.0% (281/1 002)、22.4% (374/1 668)、22.9% (388/1 688)、27.5% (142/516)、25.7% (53/206),各年龄段 HPV 感染率差异有统计学意义 (χ^2_{HPV} = 13.801, P<0.01)。 感染率以 50~59 岁年龄组感染最高,其次为 18~29 岁年龄组。各年龄组 HPV 感染率见图 1。

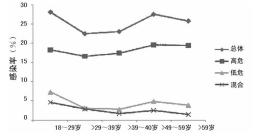


图 1 不同年龄组 HPV 感染率情况

2.3 HPV 基因亚型在各组宫颈疾病中分布情况 见表 2。在 1 154 例有临床病理诊断结果的患者中共检出 HPV 感染 606 例,由表 2 可见,慢性宫颈炎组 HPV 感染率 28. 49%(151/530),而 CIN II 组、CIN III 组、CIN III 组和宫颈癌组 HPV 感染率较宫颈炎组明显增高,分别为 62. 21%(214/344)、89. 06%(114/128)、86. 46%(83/96)和 78. 57%(44/56),总体比较差异有统计学意义($\chi^2 = 263.798, P < 0.05$)。其中 HPV16 亚型随各病理分级严重程度的增加其感染率也相应增加,差异有统计学意义($\chi^2_{bb} = 214.356, P < 0.01$)。 HPV18 在宫颈癌中占 10. 71%,仅次于 HPV16,HPV18 感染率在各宫颈疾病组差异有统计学意义($\chi^2 = 22.526, P < 0.05$)。 HPV52 在宫颈病理低分级中感染高,但在宫颈癌中感染率相对较低,与之相比HPV58 在宫颈癌中的比例反而有所增高。

2.2 不同年龄组在各组宫颈疾病中感染情况 HPV 在各个年

表 2 HPV 基因型在各病理分型中的分布[n(%)]

HPV	慢性宫颈炎	CIN I	CIN II	CIN∭	宫颈癌
	(n=530)	(n=344)	(n=128)	(n = 98)	(n=56)
HPV-neg	379(71.51)	130(37.79)	14(10.94)	13(13.54)	12(21.43)
HPV-pos	151(28.49)	214(62.21)	114(89.06)	83(86.46)	44(78.57)
High-risk HPV type					
HPV16	30(5.66)	46(13.37)	43(33.59)	48(50.00)	34(60.71)
HPV52	40(7.55)	54(15.70)	24(18.75)	13(13.54)	2(3.57)
HPV58	24(4.53)	27(7.85)	22(17.19)	13(13.54)	5(8.93)
HPV33	9(1.70)	15(4.36)	17(13.28)	8(8.33)	2(3.57)
HPV53	8(1.51)	18(5.23)	4(3.13)	2(2.08)	1(1.79)
HPV18	11(2.08)	18(5.23)	13(10.16)	7(7.29)	6(10.71)
HPV39	8(1.51)	11(3.20)	5(3.91)	1(1.04)	0(0.00)
HPV68	9(1.70)	11(3.20)	4(3.13)	3(3.13)	1(1.79)
HPV31	6(1.13)	11(3.20)	5(3.91)	2(2.08)	1(1.79)
HPV66	3(0.57)	9(2.62)	2(1.56)	0(0.00)	0(0.00)
HPV59	3(0.57)	5(1.45)	3(2.34)	2(2.08)	0(0.00)
HPV56	4(0.757)	6(1.74)	0(0.00)	0(0.00)	0(0.00)
HPV51	2(0.38)	4(1.16)	1(0.78)	0(0.00)	0(0.00)
HPV45	2(0.38)	3(0.87)	1(0.78)	1(1.04)	0(0.00)

续表 2 HPV 基因型在各病理分型中的分布[n(%)]

HPV	慢性宫颈炎	CIN I	CIN ∏	CIN∭	宫颈癌
	(n=530)	(n=344)	(n=128)	(n=98)	(n=56)
HPV35	0(0.00)	2(0.58)	1(0.78)	0(0.00)	0(0.00)
Low-risk HPV type					
HPV11	6(1.13)	12(3.49)	5(3.91)	2(2.08)	0(0.00)
HPV6	10(1.89)	19(5.52)	6(4.69)	0(0.00)	0(0.00)
CP8304	14(2.64)	11(3.20)	3(2.34)	0(0.00)	1(1.79)
HPV42	1(0.19)	3(0.87)	0(0.00)	0(0.00)	0(0.00)
HPV44	1(0.19)	2(0.58)	1(0.78)	0(0.00)	0(0.00)
HPV43	0(0.00)	0(0.00)	0(0.00)	0(0.00)	0(0.00)

2.4 HPV 单一感染和多重感染与宫颈病变的关系 见表 3。在 1 238 例阳性标本中,单一亚型感染 932 例(75. 28%),双重亚型 227 例(18. 30%),三重以上感染 79 例(6. 40%),最多达 11 种型别感染。结合宫颈病理检查结果,在宫颈癌患者中单一感染率高达 88. 60%(39/44),且 HPV16 为 31 例,HPV18 占5 例。

表 3 不同宫颈疾病 HPV 单一及多重感染情况(n)

感染情况 n	慢性宫颈炎	CIN I	CIN ∏	CIN∭	宫颈癌
单一感染 466	3 114	158	80	65	39
多重感染 140	37	56	34	18	5
合计 600	5 151	214	114	83	44

3 讨 论

19世纪70年代,德国病毒学家 Zur^[3-4]首先提出并证实 HPV 是引起宫颈癌的病因,随之 HPV 被各国研究者所关注 并研究。研究表明,HPV 感染具有明显的人种易感性和地区分布特异性,除了 HPV16 外,其他各基因型在不同地区和种族之间差异明显,如 HPV45 在非洲相对较多,HPV18、HPV33 在欧美国家较多,而 HPV58 和 HPV52 在亚洲较多^[5]。目前,我国尚缺乏成规模的 HPV 分子流行病学调查,研究报道显示,不同区域 HPV 感染分布存在特异性^[6-8]。此次对泉州地区女性宫颈 HPV 感染分布存在特异性^[6-8]。此次对泉州地区女性宫颈 HPV 感染率及亚型进行统计,其结果与本科室 2009 年统计的结果相比,阳性感染数有所增加,但主要感染亚型大致相同,说明泉州地区妇女的 HPV 易感基因型以 HPV16 型、HPV52 型、HPV58 型为主,而 HPV18 型感染率则较低^[9]。分析泉州地区女性 HPV 高危型的分布,有利于有针对性地进行 HPV 疫苗研发和临床应用。

HPV 感染与年龄的相关性在国内外的报道各不相同。调查研究显示,女性感染 HPV 的年龄分布以小于或等于 25 岁年龄组阳性感染率和 40 岁以上年龄组较高,推测原因可能为年轻患者处于性活跃期,感染机会增大,但只造成一过性短暂感染,HPV 病毒可在 6~14 个月内被机体自动清除,只有当HPV 被整合到宿主细胞基因组后,才呈持续感染状态。随着年龄的增大,激素水平和机体自身免疫力下降,HPV 病毒感染后清除能力下降,形成 HPV 感染率的双峰型特点[10-11]。本次研究基本符合 HPV 感染后在宫颈组织中整合并发展。

宫颈癌的发生和发展过程通常较为缓慢,依次经过宫颈不 典型增生、宫颈原位癌、早期浸润癌和浸润癌等过程。本研究 结果显示,随着宫颈病变程度级别的递增,HPV16 的感染率也逐级升高,提示 HPV16 是导致癌前病变及宫颈癌的主要类型。而排在易感基因型第 2 位的 HPV52 型,在宫颈癌中的感染率很低,仅占总感染率的 3.57%,一定程度上说明导致宫颈癌的基因型主要为 HPV16、HPV18,两者促使 CIN 进展为更高级别病变的可能性,较之其他基因型别概率大大增加。而HPV52 仅在宫颈病理低级别中占优势,其潜在的致癌性有待进一步研究。

总之,通过 HPV 筛查可发现宫颈癌的高危人群, HPV16、 HPV18 相关疫苗的研究将是未来研究的重心,其能够降低宫 颈癌的发病率和病死率,可最大限度为患者提供保护。

参考文献

- [1] Bernard HU, Burk RD, Chen Z, et al. Classification of papillomaviruses(PVs) based on 189 PV types and proposal of taxonomic amendments[J]. Virology, 2010, 401 (1):70-79.
- [2] Bouvard V, Baan R, Straif K, et al. A Review of Human Carcinogens-Part B: Biological Agents[J]. Lancet Oncol, 2009,10(4):321-322.
- [3] Zur HH. Human papillomaviruses and their possible role in squamous cell carcinomas[J]. Curr Top Microbiol Immunol, 1977, 7(78):1-30.
- [4] Zur HH. Papillomaviruses in anogenital cancer as a model to understand the role of viruses in human cancers [J]. Cancer Res, 1989, 49(17): 4677-4681.
- [5] Cleford GM, Swith JS, Plummer M, et al. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis[J]. Br J Cancer, 2003, 88(1):63-73.
- [6] Wang YY, Li L, Wei S, et al. Human Papillomavirus (HPV) infection in women participating in cervical cancer screening from 2006 to 2010 in Shenzhen City, South China[J]. Asian Pac J Cancer Prev, 2013, 14(12):7483-7487.
- [7] Wu EQ, Liu B, Cui JF, et al. Prevalence of type-specific human papillomavirus and pap results in Chinese women; a multi-center, population-based cross-sectional study[J]. Cancer Causes Control, 2013, 24(4):795-803.
- [8] Shen Y, Gong JM, Li YQ, et al. Epidemiology and genotype distribution of human papillomavirus(下转第 1041 页)

(1.9%)为检验科 RhD 检测错误。

- 2.2 抗体筛选和鉴定情况 共检出不规则抗体 12 份,在 Rh 确认阴性献血者中检出 7 份抗-D(1.7%),其余为 3 份抗-P1,1 份抗-M,1 份冷自身抗体。而在 D变异体和 RhD 检测错误标本中均未检出不规则抗体。
- 2.3 Rh 阴性献血者血清学表型分布结果 共检出 5 种表型, 其中 dccee 为 201 份(50.0%), dCcee 为 150 份(37.3%), dC-Cee 为 35 份(8.7%), dccEe 为 11 份(2.7%), dCcEe 为 5 份(1.3%)。

3 讨 论

人类 Rh 血型系统的临床意义仅次于 ABO 血型系统,也是最具多态性的血型系统。Rh 血型系统中与临床输血关系密切的主要是 D、C、c、E、e 等 5 种抗原,D 免疫原性最强,其次是 E 抗原。红细胞表面上有 D 抗原的称为 Rh 阳性,缺乏 D 抗原的称为 Rh 阴性。但研究发现,D 抗原存在多种变异体,包括弱 D、部分 D 和 Del 型,D 变异体的分子机制和临床意义得到了输血工作者的高度重视。近年来,相关文献陆续报道,输注 D 变异体红细胞可使 Rh 阴性患者产生抗-D,甚至 D 抗原数量极少的 Del 型红细胞也会引起免疫反应[2-3]。

笔者从 433 份送检标本中共确认 Rh 阴性 402 份,同时发 现 23 份 D 变异体和 8 份检测错误,分别占送检标本的 5.3% 和 1.9%。可见,初检为 Rh 阴性的标本必须进行 Rh 确认试 验,从而排除 D 变异体和检测错误等情况,如有必要,可进一 步通过吸收放散试验排除 Del 型。中国 Rh 阴性人群中有较高 比例的 Del 型,姜健等[4] 在 351 份盐水抗-D 阴性标本中检出 Del型 32份。李宏等[5]研究发现,D变异体在四川地区有极其 丰富的多态性,且发现了新的等位基因,提示作者进一步研究 方向为南充市 D 变异体形成的分子机制。为了提高 Rh 阴性 血液制剂输注的安全性,作者对 Rh 阴性献血者群体普查不规 则抗体,检出不规则抗体 12 份,7 份为抗-D。经随访调查这 7 例献血者均存在免疫史,6例女性献血者有妊娠史,1例男性献 血者有输血史。本次调查南充市 Rh 阴性献血者不规则抗体 的检出率为 2.99%,在 23 份 D 变异体的血浆中未检出不规则 抗体;而周国平等[6]报道,上海市 Rh 阴性献血者不规则抗体 的检出率为 0.69%,在 66份 D 变异体的血浆中亦未检出不规 则抗体。四川省南充市红十字中心血站对于含有不规则抗体 的 Rh 阴性血液,处置措施为红细胞成分制成洗涤红细胞供应 临床,而血浆予以报废或作为科研用途。Rh 阴性献血者的血 清学表型分布结果表明,主要以 dccee 和 dCcee 为主,其余为 dCCee、dccEe 和 dCcEe,本次调查未检出 dccEE、dCcEE、dC-CEe、dCCEE、dCCEE、黄表型,与重庆、成都地区分布情况相似 $^{[7]}$,也与东部的青岛、丽水等地区分布情况相似 $^{[8-9]}$ 。

为适应临床输血发展的要求,四川省南充市红十字中心血站通过建立一支 Rh 阴性献血者应急队伍,并开展 Rh 阴性红细胞低温冰冻技术,保障了临床 Rh 阴性患者的用血及时性。同时,对 Rh 阴性献血者群体进行血清学表型和不规则抗体调查,建立 Rh 阴性献血者血型血清学档案库,可尽快地为患者提供配血相合的血液,提高临床 Rh 阴性患者的用血有效性和安全性。通过本次调查,掌握了 Rh 阴性无偿献血者的血清学表型和不规则抗体的分布情况,并为下一步研究本地区 Rh 阴性形成的分子机制奠定基础。

参考文献

- [1] 徐研,洪缨,郑小芳. 成都地区献血人群 RhD 阴性个体 RhD 基因分子机制研究[J]. 中国输血杂志,2014,27(2): 146-148.
- [2] Wanger T, Kormoczi GF, Buchta C, et al. Anti-D immunization by DEL red blood cells [J]. Transfusion, 2005, 45 (4):520-526.
- [3] Yasuda H,Ohto H,Sakuma S,et al. Secondary anti-D immunization by Del red blood cells[J]. Transfusion, 2005, 45(10):1581-1584.
- [4] 姜健,夏卫,郁心,等. 无锡地区献血者 D 变异体的检定结果[J]. 中国输血杂志,2010,23(11);942-943.
- [5] 李宏,宋宁,邓永福,等.四川地区汉族人群 Rh(D)变异体 分子机制研究[J].中国输血杂志,2010,23(5);368-372.
- [6] 周国平,谢云峥,向东,等.上海市 Rh 阴性献血者 D 变异型与不规则抗体调查[J].临床检验杂志,2009,27(3): 233-234.
- [7] 王芳,黄霞,毛伟,等. 重庆地区献血者 RhD 阴性血型抗原分布调查「J]. 国际检验医学杂志,2009,30(2):199.
- [8] 潘海平,于琦,张霞.青岛地区 Rh 阴性献血者表现型分布 [J].中国输血杂志,2012,25(9):875.
- [9] 庄杰,赵龙友,纪勇平,等.丽水市 Rh 阴性献血者血清学 表型和不规则抗体调查[J].中国输血杂志,2012,25(6): 578-579.

(收稿日期:2014-11-17 修回日期:2014-12-22)

(上接第 1039 页)

(HPV) in women of Henan Province, China [J]. Clin Chim Acta, 2013, 415(16): 297-301.

- [9] 张志珊,庄建良,李爱禄,等. 泉州地区女性人乳头状瘤病毒感染与宫颈病变的相关性探讨[J]. 中华医院感染学杂志,2011,21(7):1367-1370.
- [10] Schiffman M, Wentzensen N, Wacholder S, Human papil-

lomavirus testing in the prevention of cervical cancer[J]. J Natl Cancer Inst, 2011, 103(5): 368-383.

[11] Kang LN, Castle PE, Zhao FH, et al. A prospective study of age trends of high-risk human papillomavirus infection in rural China [J]. BMC Infect Dis, 2014, 14(1):31-32.

(收稿日期:2014-11-05 修回日期:2014-12-15)