全自动血型分析仪在血站血型筛查工作中的应用

武丽娟(河南省安阳市中心血站检验科 455000)

【摘要】目的 探讨并评价全自动血型分析仪应用于血站献血者血型筛查的可行性。方法 采用全自动血型分析仪(全自动法)对 20~335 例献血者标本进行 ABO 及 Rh(D)血型鉴定、盐水不规则抗体初筛,并与 U 型微板法 (半自动法)进行比对试验。结果 全自动法与半自动法比较,ABO 血型 1 次准确定型率:99.93%>98.84%,差异无统计学意义(P>0.05);Rh-D 血型鉴定正确率均为 100.0%;O 细胞凝集阳性率:0.13%>0.06%,差异有统计学意义(P<0.05);可保持反定型检测准确度达 100.0%的血浆稀释倍数为 1:64,高于 1:4;脂血标本和溶血标本导致的误判率差异有统计学意义(P<0.05)。结论 全自动血型分析仪具有较高的准确度、灵敏度及抗干扰能力,更易发现盐水不规则抗体,适合于血站开展献血者血型筛查工作。

【关键词】 血型; 筛查; 血型分析仪

DOI: 10. 3969/j. issn. 1672-9455. 2015. 09. 035 文献标志码: A 文章编号: 1672-9455(2015)09-1268-03

Application of fully automatic blood analyzer in blood type screening work in blood stations WU Li-juan (Anyang Municipal Central Blood Station, Anyang, Henan 455000, China)

(Abstract) Objective To research and evaluate the feasibility for applying the fully automatic blood analyzer in donators' blood type screening in blood station. **Methods** The fully automatic blood analyzer (automatic method) was adopted to conduct the ABO and Rh-D blood typing and brine irregular antibody preliminary screening in 20 335 specimens of blood donors, and then the detection results were compared with those detected by using the U microplate method (semi-automatic contrast test). **Results** Comparing the fully automatic method with the semi-automatic method, the once accurate typing rate of ABO type; 99. 93 % > 98. 84 %, the difference had no statistical significance (P>0.05); the accuracy rate of Rh(D) type identification was 100.0%; the positive rate of O cell agglutination; 0. 13 %>0.06 %, the difference was statistically significant(P<0.05); the plasma dilution ratio of keeping the reverse typing detection's accuracy up to 100.0 % was 1:64, higher than 1:4; the difference in the misjudgment rate caused by hemolysis and lipemia blood specimens was statistically significant(P<0.01). **Conclusion** The fully automatic blood analyzer has higher accuracy, sensitivity and anti-interference ability, is easier to find the brine irregular anti-bodies and suitable for the donors' blood type screening work in blood station.

(Key words) blood types; screening; blood analyzer

血站血型检测是无偿献血血液检测的重要组成部分,其结果判定的正确与否,是保证输血安全的首要条件,错误的定型结果会危害患者的生命安全。随着检测技术的发展,采用全自动血型仪进行规范化、自动化的血型检测已逐渐取代了纸片法和 U 型微板法。本血站于 2012 年 12 月购置了 1 台深圳爱康 Metis 200 全自动血型分析仪,实现了常规 ABO、Rh(D)和不规则抗体筛查的检测自动化。本文对全自动血型仪检测血型与U 型微板法检测结果进行比对,现报道如下。

1 资料与方法

- 1.1 标本来源 2013 年 $9 \sim 12$ 月本血站采集的无偿献血者 全血标本 20 335 人份,每人用乙二胺四乙酸二钾试管留取 5 mL 血样。
- 1.2 仪器与试剂 单克隆抗-A、抗-B(批号: 2012093025、2012123035)由北京金豪制药股份有限公司提供;抗-D 血清(批号: 20111026、20120320)由上海血液生物医药有限责任公司提供; A、B、O 试剂红细胞(批号: 20135324、20135326、20135327、20135329、20135330)由上海生物医药有限责任公司提供。ML-STAR全自动样本加样仪(瑞士哈美顿公司);孵育

振荡器(奥地利 Anthos 公司);平板离心机(德国产);HT3 酶标仪(奥地利 Anthos 公司);全自动血型仪(深圳爱康公司)。

1.3 方法

- 1.3.1 U型微板法 俗称半自动法。根据红细胞通过微板在盐水介质凝集的原理,在 U型微板上通过 ML-STAR 全自动样本加样仪处理标本和试剂。反定型板布局 Ac、Bc、Oc,每块板检测 30 份标本;正定型布局抗-A、抗-B,每块板检测 44 份标本;Rh(D)检测单独在一块微板检测,正、反定型检测和 Rh(D)检测试剂和标本量为 50 μ L:30 μ L。完成分配的微板手工转移至孵育振荡器中,转速 400 r、振幅 3F、振荡 6 min;手工转移至平板离心机,选择 500 r 的转速离心 1 min;转移到孵育振荡器,选择转速 1 000 r、振幅 1F、振荡 2 min,静置 3 min,用 HT3 酶标仪比色,通过 ITSWELL 软件进行分析判断,同时肉眼判断结果符合性。对可疑标本再重复检测,仍无法得到明确结果时,送血型室确认。
- 1.3.2 全自动法 根据红细胞通过微板在盐水介质凝集的原理,反定型布局 Ac、Bc、Oc,每块板检测 30 份标本;正定型布局抗-A、抗-B、抗-D,每块板检测 30 份标本。在全自动血型仪上

采用 UV 型板,从标本条码的采集、标本分配、试剂分配、再到 孵育、离心、振荡、CCD 成像、分析判断、传输结果等步骤,过程 全自动化。对可疑标本再重复检测,仍无法得到明确结果时,送血型室确认。

- 1.3.3 质量控制 每批标本检测前进行抗-A、抗-B、抗-D 和 Ac、Bc 质控试剂的符合性试验,用来控制试剂质量,如发现质控试剂符合性试验结果异常,暂停试验,分析发生异常的原因。 1.4 统计学处理 采用 SPSS19.0 软件进行统计学分析,各组数据比较用 γ^2 分析,以 P<0.05 为差异有统计学意义。
- 2 结 果
- **2.1** 全自动法和 U 型微板法两种方法检测同样标本血型筛查结果比较 见表 1。58 例 Rh(D)(一)送本血站血型室鉴定均为 Rh(D)(一),其中 1 例检测出抗-C。与 U 型微板法比较,一次准确定型差异无统计学意义($\chi^2=0.727,P>0.05$);Oc 凝集差异有统计学意义($\chi^2=5.153,P<0.05$)。
- 2.2 全自动法与 U 型微板法 Oc 凝集发现的盐水不规则抗体 参比试验室鉴定结果比对 见表 2。

女! 网触月法洲多哺有结条作蚁 70-70-1	i 查 结 果 比 较 [n(%) [−]	两种方法而型筛	表 1
-------------------------	-----------------------------------	---------	-----

→ ×			DI (D) (
方法	n —	一次准确定型	正反定型不符	Oc 凝集	— Rh(D)(-)
全自动法	20 335	20 320(99.93)*	6(0.03)	26(0.13)*	58(0.29)
U型微板法	20 335	20 078(98.74)	1(0.01)	12(0.06)	58(0.29)

注:与 U 型微板法比较,* P<0.05。

表 2 两种方法 Oc 凝集发现的盐水不规则抗体参比试验室鉴定结果比对

	Oc 凝集						正、反定型不符				
方法	n	冷自身抗体	抗-M	未分类盐水 不规则抗体	未检出 不规则抗体	n	亚型	盐水不 规则抗体	正常血型		
全自动法	26	7	6	10	3	6	2	1	3		
U型微板法	12	5	3	3	1	1	1	0	0		

表 3 两种方法对倍比稀释后的血浆反定型检测结果比较

方法 -	血浆稀释倍数								
刀 伍	原液	1:2	1:4	1:8	1:16	1:32	1:64	1:128	1:256
全自动法	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)/(-)	(-)
U型微板法	(+)	(+)	(+)	(+)/(-)	(-)	(-)	(-)	(-)	(-)

注:(+)表示阳性,(-)表示阴性。

2.3 全自动法和 U 型微板法倍比稀释后的血浆反定型检测结果比较 见表 3。2.4 全自动法和 U 型微板法对脂血和溶血标本血型判读结果比较 见表 4。

表 4 两种方法对脂血和溶血标本血型筛查结果比较

		脂血标	本		溶血杨	示本	
方法	n #	判断正确	误判和 无法判读	n	判断正确	误判和 无法判读	
全自动法	143	143	0☆	126	5 124	2 *	
U型微板法	143	132	11	126	3 113	13	

注:与 U 型微板法比较, $\chi^2 = 10.607$, $\triangle P < 0.05$; $\chi^2 = 7.626$, * P < 0.05。

3 讨 论

以往血型鉴定通常是采用试管法,该法是经典的 ABO、Rh (D) 血型鉴定方法,其结果准确可靠,但其操作难以规范化,不适宜大批量标本的处理及结果的保存[1]。 U 型微板法虽然已作为常规的血型检测方法应用于血站的血型鉴定,但是,由于该方法采用全自动加样仪添加标本和试剂,其他操作步骤如微

板离心、振荡、比色、结果比对等均需要人工操作,操作人员的经验丰富与否会直接影响血型结果的判断[2-3]。全自动法是在微板法基础上近几年发展起来的,从加样到判定,全部由血型仪完成,同时在试验过程中,凝集结果和 CCD 成像结果自动备份保存,全过程可监控,真正实现了全自动血型检测,减少了人为因素对试验的影响。

从表 1 数据来看, 20 335 份标本中采用全自动法检测的 ABO 一次准确定型率(99.93%)高于 U 型微板法的 ABO 一次准确定型率(98.74%), Rh(D)血型定型正确率 100.00%。 从表 3 数据来看,将血浆倍比稀释后,全自动法在血浆稀释度小于或等于 64 倍时定型准确,稀释度达到 128 倍时可出现误判; U 型微板法在血浆稀释度小于或等于 4 倍时定型准确,稀释度达到 8 倍时可出现误判。由此说明本血站采用全自动法检测血型无论准确性还是灵敏性,结果可靠性要都优于 U 型微板法。另外,每份标本采用全自动法检测正、反定型和 Rh(D)血型添加的试剂量仅为 U 型微板法的一半,降低了血型试剂成本。

红细胞血型不规则抗体是引起血型鉴定、交叉配型困难及 输血不良反应的主要原因之一^[4]。为了提高血液质量,避免临 床患者输注含有不规则抗体的血液制品而发生溶血性输血反应,保证输血安全,本血站采用随机 3 人份混合 Oc 试剂对献血者血浆检测,可以检出部分盐水不规则抗体^[5]。从表 1 和表 2 统计的两种方法检出的 Oc 凝集数据比较来看,经血型室确认后,全自动血型仪 Oc 凝集阳性率明显高于 U 型微板法,说明用全自动血型仪做盐水不规则抗体初筛,更容易发现盐水不规则抗体,输血安全得到了进一步保证。

用全自动血型仪检测出的6例正、反定型不符的标本经本 站血型室确认2例均为亚型,其中有1例含有不规则抗体,3 例为正常血型;用 U 型微板法检出的仅 1 例正、反定型不符标 本经本站血型室确认也为亚型。分析原因,主要是由于 U 型 微板法在整个检测过程存在人工干预。该 5 例标本血清中的 抗体效价较低,导致凝集侧凝集颗粒不明显,U型微板法在比 色判读前首先进行人工肉眼的初步判断,当出现比色结果和人 工判断不一致时,检测人员会采取吸取微孔上清液来达到增加 该孔透明度,再次比色反定型凝集弱的问题消除。同样血清效 价较低的标本用全自动血型仪检测时,加样前还要进行 30 μL 生理盐水稀释标本血清,导致凝集度更弱,这种情况下,反定型 进行 CCD 拍照读值时,会出现 Tc 值在可疑区域,而正定型读 值正常,从而导致正、反定型不符。但是经过手工试管法重新 检测,并未造成血型错判。由此可见,当 ABO 血型全自动化 检测仪正、反定型不一时,必须再用常规试管法进一步确认,以 保证检验结果的正确性[6]。

从表 4 统计数据可以看出,检验科用全自动血型仪对 143 例脂血标本和 126 例溶血标本进行检测,脂血标本血型鉴定正确率 100.0%(143/143),溶血标本中有 2 例重度溶血标本判读出现偏差。采用 U 型微板法进行脂血和溶血标本检测,血型误判率和无法判读率分别达到了 7.7%(11/143)和 10.3%(13/126),与文献[7]报道基本一致。这些误判和无法判读的

脂血、溶血标本都需要工作人员采用手工试管法进行确认,不仅增加了工作量,同时也会延误报告时间。全自动血型仪对脂血、溶血标本检测正确率之所以这么高,一方面是因为用全自动血型仪加样,标本血浆量、试剂量用量都很少,反应总体积也很小,再加上生理盐水的稀释,因此脂血或溶血血浆被稀释的效果非常明显,降低了脂血和溶血对结果判读的影响^[8]。另一方面是因为全自动血型仪进行 CCD 判读时从板底扫描,很大程度上降低了反应体系中上清液的浊度对判读的影响。

参考文献

- [1] 周国平,周结,向东,等. 全自动血型分析仪应用于献血者 血型筛查[J]. 中国输血杂志,2011,24(5):395-398.
- [2] 向东,刘曦,郭忠慧,等. 上海地区中国人群中 ABO 亚型的研究[J]. 中国输血杂志,2006,19(1):25-26.
- [3] 韩惠云,全兴明,窦茉莉. 微板法全自动血型检测影响因素探讨[J]. 中国实用医药,2010,5(22):227-228.
- [4] Moise KJ. Red blood cell alloimmunization in pregnancy [J]. Semin Hematol, 2005, 42(3):169-178.
- [5] 张雄民,向东,孟妍,等.上海地区部分献血者中不规则抗体的调查[J].中国医药导刊,2009,11(4):647-648.
- [6] 郑磊,张鹏,王前,等. ABO 血型实验室检测方法现状及进展[J]. 中国输血杂志,2006,19(1):80-82.
- [7] 刘健娣,邓雪莲. 全自动血型仪在血站的应用[J]. 临床和 实验医学杂志,2010,9(4):294-295.
- [8] 周筱嫣,向东,徐忠,等. ABO 血型自动化检测[J]. 中国输血杂志,2010,23(3):205-206.

(收稿日期:2014-11-10 修回日期:2015-01-28)

(上接第 1267 页)

改善 DPN 的临床症状^[9]。

本研究结果显示,治疗组能够显著改善 DPN 患者的临床疗效,治疗总有效率达 84%。治疗组周围神经传导速度较对照组显著提高,这可能与空气波压力治疗改善血液循环,减轻组织水肿,加强下肢氧合度并加速炎症致痛物质的代谢,改善周围神经营养状况有关^{□□}。总之,空气波压力治疗仪联合 α-硫辛酸及护理干预治疗 DPN 临床疗效显著,安全性较好,值得推广。

参考文献

- [1] 姜月峰,靳水玲.前列地尔联合甲钴胺和 α-硫辛酸治疗老年 2 型糖尿病周围神经病变疗效观察[J].中国实用神经疾病杂志,2012,15(5):75-76.
- [2] 李开秀,涂莉莉. 空气波压力治疗仪在改善老年糖尿病病 人周围神经病变中的作用[J]. 全科护理,2013,11(3): 195-196.
- [3] 李晓英. 空气波压力治疗仪在深静脉血栓形成中的应用 [J]. 齐鲁护理杂志,2011,17(5):124.
- 「4〕 马艳庆, 硫辛酸联合前列地尔治疗糖尿病周围神经病变

的研究[J]. 中国实用医药,2012,7(35):122-124.

- [5] 陆再英,钟南山.内科学[M].7版.北京:人民卫生出版 社,2008:777.
- [6] 程长明,郑黎,郑海燕,等. 空气压力波联合局部封包治疗糖尿病周围神经病变[J]. 现代医学,2011,39(1):95-97.
- [7] 李剑军,林东源,叶健波,等. 甲钴胺联合红外线治疗糖尿病周围神经病变的疗效观察[J]. 内科,2013,8(6):602-603.
- [8] 罗玉韵,丁萍,徐进华,等. 丹红注射液联合空气波压力治疗糖尿病周围神经病变[J]. 浙江中西医结合杂志,2010,20(5):284-285.
- [9] 张弢,王晓梅,李湘,等. 依帕司他联合硫辛酸治疗糖尿病 周围神经病变临床疗效[J]. 中国现代药物应用,2014,8 (3):138-139.
- [10] 陈凯,刘幼硕,秦爱平,等. α-硫辛酸联合空气波压力治疗 老年糖尿病周围神经病变疗效观察[J]. 现代生物医学进 展,2013,13(13):2476-2478.

(收稿日期:2014-11-28 修回日期:2015-01-22)